Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Binary endorelation
▾
Preordering relation
▾
Partial ordering relation
▾
Partially ordered set
▾
Interval
▾
Set of intervals
▾
J-interval
▾
N-interval
▾
Real N-interval
▾
Set of euclidean real intervals
Elementary euclidean real set
Formulation 0
Let $\mathbb{R}^N$ be a
D5630: Set of euclidean real numbers
such that
(i)
$\mathcal{P}_{\text{interval}}(\mathbb{R}^N)$ is the
D3037: Set of euclidean real intervals
in $\mathbb{R}^N$
A
D11: Set
$E \subseteq \mathbb{R}^N$ is an
elementary euclidean real set
in $\mathbb{R}^N$ if and only if \begin{equation} \exists \, I_1, \ldots, I_N \in \mathcal{P}_{\text{interval}}(\mathbb{R}) : E = \bigcup_{n = 1}^N I_n \end{equation}