(i) | $\mathcal{G}_j \subseteq \mathcal{F}$ is a D78: Subset for each $j \in J$ |
Then $\mathcal{G} = \{ \mathcal{G}_j \}_{j \in J}$ is an independent collection of event collections in $P$ if and only if \begin{equation} \forall \, I \in \mathcal{P}_{\mathsf{finite}}(J) \left[ \forall \, i \in I : E_i \in \mathcal{G}_i \quad \implies \quad \mathbb{P} \left( \bigcap_{i \in I} E_i \right) = \prod_{i \in I} \mathbb{P}(E_i) \right] \end{equation}