ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Subset
Power set
Hyperpower set sequence
Hyperpower set
Hypersubset
Subset algebra
Subset structure
Measurable space
Measure space
Probability space
Independent event collection
Definition D3831
Independent collection of event collections
Formulation 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $\mathcal{G}_j \subseteq \mathcal{F}$ is a D78: Subset for each $j \in J$
Let $\mathcal{P}_{\mathsf{finite}}(J)$ be the D2337: Set of finite subsets of $J$.
Then $\mathcal{G} = \{ \mathcal{G}_j \}_{j \in J}$ is an independent collection of event collections in $P$ if and only if \begin{equation} \forall \, I \in \mathcal{P}_{\mathsf{finite}}(J) \left[ \forall \, i \in I : E_i \in \mathcal{G}_i \quad \implies \quad \mathbb{P} \left( \bigcap_{i \in I} E_i \right) = \prod_{i \in I} \mathbb{P}(E_i) \right] \end{equation}
Formulation 1
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $\mathcal{G}_j \subseteq \mathcal{F}$ is a D78: Subset for each $j \in J$
Then $\mathcal{G} = \{ \mathcal{G}_j \}_{j \in J}$ is an independent collection of event collections in $P$ if and only if \begin{equation} \forall \, N \in 1, 2, 3, \ldots : \forall \text{ distinct } j_1, \ldots, j_N \in J \left[ E_{j_1} \in \mathcal{G}_{j_1}, \ldots, E_{j_N} \in \mathcal{G}_{j_N} \quad \implies \quad \mathbb{P} \left( \bigcap_{n = 1}^N E_{j_n} \right) = \prod_{n = 1}^N \mathbb{P}(E_{j_n}) \right] \end{equation}
Children
D471: Independent collection of sigma-algebras