Let $x : I \times J \to X$ be a D102: Matrix.
A D102: Matrix $y : J \times I \to X$ is a transpose of $x$ if and only if
\begin{equation}
\forall \, j \in J :
\forall \, i \in I :
y_{j, i} = x_{i, j}
\end{equation}
▼ | Set of symbols |
▼ | Alphabet |
▼ | Deduction system |
▼ | Theory |
▼ | Zermelo-Fraenkel set theory |
▼ | Set |
▼ | Binary cartesian set product |
▼ | Binary relation |
▼ | Map |
▼ | Countable map |
▼ | Array |
▼ | Matrix |
▶ | D5674: Complex matrix antisymmetric part |
▶ | D5675: Complex matrix symmetric part |
▶ | D399: Symmetric matrix |