The

**set of subdigraphs**of $G_X$ is the D11: Set \begin{equation} \{ G_E = (E, \mathcal{E}_E) \mid E \subseteq X \text{ and } \mathcal{E}_E \subseteq \mathcal{E}_X \} \end{equation}

▾ Set of symbols

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

▾ Binary endorelation

▾ Digraph

▾ Subdigraph

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

▾ Binary endorelation

▾ Digraph

▾ Subdigraph

Formulation 0

Let $G_X = (X, \mathcal{E}_X)$ be a D2696: Digraph.

The**set of subdigraphs** of $G_X$ is the D11: Set
\begin{equation}
\{ G_E = (E, \mathcal{E}_E) \mid E \subseteq X \text{ and } \mathcal{E}_E \subseteq \mathcal{E}_X \}
\end{equation}

The