An D548: Ordered pair $G_E = (E, \mathcal{E}_E)$ is a

**subdigraph**of $G_X$ if and only if

(1) | $E \subseteq X$ | (D78: Subset) |

(2) | $\mathcal{E}_E \subseteq \mathcal{E}_X$ | (D78: Subset) |

▾ Set of symbols

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

▾ Binary endorelation

▾ Digraph

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

▾ Binary endorelation

▾ Digraph

Formulation 0

Let $G_X = (X, \mathcal{E}_X)$ be a D2696: Digraph.

An D548: Ordered pair $G_E = (E, \mathcal{E}_E)$ is a**subdigraph** of $G_X$ if and only if

An D548: Ordered pair $G_E = (E, \mathcal{E}_E)$ is a

(1) | $E \subseteq X$ | (D78: Subset) |

(2) | $\mathcal{E}_E \subseteq \mathcal{E}_X$ | (D78: Subset) |

Child definitions