Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Empty map
▾
Collection
▾
Ring element collection
▾
Ring element combination
▾
Standard formal finite combination
▾
Polynomial map
▾
Polynomial function
▾
Complex polynomial function
Monic complex polynomial function
Formulation 1
Let $f : \mathbb{C} \to \mathbb{C}$ be a
D4312: Complex polynomial function
such that
(i)
\begin{equation} f(z) = \sum_{n = 0}^N r_n z^n \end{equation}
Then $f$ is a
monic complex polynomial function
if and only if \begin{equation} r_N = 1 \end{equation}