Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Subset
▾
Power set
▾
Hyperpower set sequence
▾
Hyperpower set
▾
Hypersubset
▾
Subset algebra
▾
Subset structure
▾
Measurable space
▾
Measurable map
▾
Random variable
▾
Random number
▾
Random Euclidean number
▾
Random euclidean real number
▾
Symmetric random euclidean real number
▾
Standard symmetric random euclidean real number
Standard symmetric random real number
Formulation 0
A
D3161: Random real number
$X \in \text{Random}(\mathbb{R})$ is
standard symmetric
if and only if \begin{equation} X \overset{d}{=} - X \end{equation}