Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Countable map
▾
Array
▾
Matrix
▾
Real collection matrix
▾
Complex matrix
▾
Triangular complex matrix
Lower triangular complex matrix
Formulation 0
A
D999: Complex matrix
$A \in \mathbb{C}^{N \times N}$ is a
lower triangular complex matrix
if and only if \begin{equation} \forall \, n, m \in 1, \ldots, N \left( n > m \quad \implies \quad C_{n, m} = 0 \right) \end{equation}