Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Operation
N-operation
Binary operation
Basic binary operation
Unsigned basic binary operation
Semimetric
Metric
Metric space
Cauchy sequence
Formulation 0
Let $M = (X, d)$ be a D1107: Metric space.
A D62: Sequence $x : \mathbb{N} \to X$ is a Cauchy sequence with respect to $M$ if and only if \begin{equation} \forall \, \varepsilon > 0 : \exists \, N \in \mathbb{N} \, (n, m \geq N \quad \implies \quad d(x_n, x_m) < \varepsilon) \end{equation}
Formulation 1
Let $M = (X, d)$ be a D1107: Metric space.
A D62: Sequence $x : \mathbb{N} \to X$ is a Cauchy sequence in $M$ if and only if \begin{equation} \forall \, \varepsilon > 0 : \exists \, N \in \mathbb{N} \, (n, m \geq N \quad \implies \quad x_m \in B_d(x_n, \varepsilon)) \end{equation}
Child definitions
» D724: Set of Cauchy sequences
Results
» R244: Convergent sequence is Cauchy
» R3440: Uniformly continuous map preserves Cauchy sequences
» R3228: Bounded sequence need not be Cauchy
» R3289: Sequence in product space is Cauchy iff each component sequence is Cauchy