A D11: Set $D \subseteq X$ is a Dedekind cut in $P$ if and only if
(1) | \begin{equation} \emptyset \neq C \neq X \end{equation} |
(2) | \begin{equation} \forall \, x \in X : \forall \, c \in C \left( (x, c) \in {\preceq} \quad \implies \quad x \in c \right) \end{equation} |
(3) | \begin{equation} \forall \, c \in C : \exists \, c' \in C : (c, c') \in {\preceq} \end{equation} |