Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Empty map
▾
J-tuple
▾
J-tuple-argued-valued map
▾
J-tuple-argued map
▾
Sequence-argued map
▾
Finite sequence-argued map
Symmetric map
Formulation 0
Let $S_N$ be a
D1607: Set of permutations on N letters
.
Let $X$ be a
D11: Set
such that
(i)
$X^N : = \prod_{n = 1}^N X$ is a
D326: Cartesian product
(ii)
$f : X^N \to Y$ is a
D18: Map
Then $f$ is a
symmetric map
if and only if \begin{equation} \forall \, \pi \in S_N : \forall \, (x_1, \ldots, x_N) \in X^N : f(x_1, \ldots, x_N) = f(x_{\pi(1)}, \ldots, x_{\pi(N)}) \end{equation}
Child definitions
»
D729: Conjugate symmetric complex function
Results
»
R5624: Euclidean real dot product is symmetric