The

**set of quaternions**is the D11: Set \begin{equation} \mathbb{R}^4 \end{equation}

▾ Set of symbols

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

▾ Map

▾ Cartesian product

▾ Complex cartesian product

▾ Real cartesian product

▾ Euclidean real Cartesian product

▾ Alphabet

▾ Deduction system

▾ Theory

▾ Zermelo-Fraenkel set theory

▾ Set

▾ Binary cartesian set product

▾ Binary relation

▾ Map

▾ Cartesian product

▾ Complex cartesian product

▾ Real cartesian product

▾ Euclidean real Cartesian product

Formulation 0

Let $\mathbb{R}$ be the D282: Set of real numbers.

The**set of quaternions** is the D11: Set
\begin{equation}
\mathbb{R}^4
\end{equation}

The