Let $X, Y \in \text{Random}(\mathbb{R})$ each be a D3161: Random real number such that
Let $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ each be a D993: Real number such that
(i) | $X, Y$ is an D2713: Independent random collection |
(i) | \begin{equation} \alpha \neq 0 \neq \gamma \end{equation} |
Then $\alpha X + \beta, \gamma Y + \delta$ is an D2713: Independent random collection.