ThmDex – An index of mathematical definitions, results, and conjectures.
P2153
If $g(b) - g(a) = 0$, then $g(a) = g(b)$ and the claim follows from R1074: Rolle's theorem. Assume thus that $g(b) - g(a) \neq 0$ and consider a function $h : [a, b] \to \mathbb{R}$ given by \begin{equation} h(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)} g(x) \end{equation} Now \begin{equation} \begin{split} h(b) - h(a) = f(b) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} (g(b) - g(a)) = 0 \end{split} \end{equation} That is, $h(a) = h(b)$. Moreover, $h$ is continuous on $[a, b]$ and differentiable on $(a, b)$ since $f$ and $g$ are. Therefore, R1074: Rolle's theorem implies that there exists $c \in (a, b)$ such that \begin{equation} h'(c) = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)} g'(c) = 0 \end{equation} and equivalently \begin{equation} f'(c) (g(b) - g(a)) = g'(c)(f(b) - f(a)) \end{equation} $\square$