Let $[a, b] \subseteq \mathbb{R}$ be a D544: Closed real interval such that
(i) | \begin{equation} a < b \end{equation} |
(ii) | $f : [a, b] \to \mathbb{R}$ is a D5231: Standard-continuous real function on $[a, b]$ |
(iii) | $f$ is a D5614: Differentiable real function on $(a, b)$ |
(iv) | \begin{equation} f(a) = f(b) \end{equation} |
Then
\begin{equation}
\exists \, x \in (a, b) :
f'(x) = 0
\end{equation}