Applying the additivity of inner product in each argument and orthogonality of the collection $x_1, \ldots, x_N$, we have
\begin{equation}
\begin{split}
\left\Vert \sum_{n = 1}^N x_n \right\Vert^2
& = \left( \sqrt{\left\langle \sum_{n = 1}^N x_n, \sum_{n = 1}^N x_n \right\rangle} \right)^2 \\
& = \left\langle \sum_{n = 1}^N x_n, \sum_{n = 1}^N x_n \right\rangle \\
& = \sum_{n = 1}^N \sum_{m = 1}^N \langle x_n, x_m \rangle
= \sum_{n = 1}^N \sum_{m = 1}^N \langle x_n, x_m \rangle I_{\{ n \}}(m)
= \sum_{n = 1}^N \langle x_n, x_n \rangle
= \sum_{n = 1}^N \Vert x_n \Vert^2
\end{split}
\end{equation}
where the $I_{\{ n \}}$ are each an
D41: Indicator function. $\square$