Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Function
Real collection function
Euclidean real function
Real function
Rational function
Integer function
Natural number function
Boolean function
Indicator function
Formulation 0
Let $X$ be a D11: Set.
The indicator function on $X$ with respect to $E \subseteq X$ is the D992: Function \begin{equation} X \to \{ 0, 1 \}, \quad x \mapsto \begin{cases} 1, \quad & x \in E \\ 0, \quad & x \in X \setminus E \end{cases} \end{equation}
Formulation 1
Let $X$ be a D11: Set such that
(i) $E \subseteq X$ is a D78: Subset of $X$
The indicator function on $X$ with respect to $E$ is the D218: Boolean function \begin{equation} X \to \{ 0, 1 \}, \quad x \mapsto |E \cap \{ x \}| \end{equation}
Conventions
Convention 0 (Notation for indicator function) : Let $X$ be a D11: Set. We denote the D41: Indicator function on $X$ with respect to $E \subseteq X$ by $I_E$.
Subdefinitions
» D382: Heaviside function
Child definitions
» D6102: Dirichlet function
» D4210: Indicator function operator
» D109: Signum function
Results
» R1194: Indicator function with respect to set complement
» R3531: Pointwise product with indicator function is lower bound for unsigned basic function
» R1868: Composition of indicator function with set endomorphism
» R1193: Finite product of indicator functions equals indicator of intersection
» R4333: Binary product of indicator functions equals indicator of intersection
» R2370: Real arithmetic expression for cardinality of countable set
» R4565: Countable indicator partition of a euclidean real function
» R4566: Countable indicator partition of a complex function
» R4567: Countable indicator partition of a random euclidean real number
» R4568: Countable indicator partition of a random complex number
» R2966: Indicator function under scaling of the argument