Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Function
▾
Real collection function
▾
Euclidean real function
▾
Real function
▾
Rational function
Integer function
Formulation 0
Let $\mathbb{Z}$ be the
D367: Set of integers
.
A
D18: Map
$f : X \to Y$ is an
integer function
if and only if \begin{equation} Y \subseteq \mathbb{Z} \end{equation}
Child definitions
»
D4949: Natural number function