Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Function
▾
Real collection function
▾
Euclidean real function
Real function
Formulation 0
Let $\mathbb{R}$ be the
D282: Set of real numbers
.
A
D18: Map
$f : X \to Y$ is a
real function
if and only if \begin{equation} Y \subseteq \mathbb{R} \end{equation}
Child definitions
»
D2: Absolutely continuous real function
»
D4947: Rational function
»
D5629: Real neuron function
Results
»
R4127: Real exponentiation function with unsigned exponent is isotone on unsigned reals
»
R5136: Minimax inequality