Let $[a, b] \subseteq \mathbb{R}$ be a
D544: Closed real interval such that
Then $f$ is
absolutely continuous if and only if
\begin{equation}
\forall \, \varepsilon > 0 :
\exists \, \delta > 0 :
\forall \, N \in 1, 2, 3, \ldots :
\forall \, \text{pairwise disjoint } [a_1, b_1], \ldots, [a_N, b_N] \subseteq [a, b]
\left( \sum_{n = 1}^N |b_n - a_n| < \delta \quad \implies \quad \sum_{n = 1}^N |f(b_n) - f(a_n)| < \infty \right)
\end{equation}