ThmDex – An index of mathematical definitions, results, and conjectures.
Result R1076 on D667: Minimum element
Minimum element is unique
Formulation 0
Let $P = (X, {\preceq})$ be a D1103: Partially ordered set such that
(i) $X \neq \emptyset$
Let $a, b \in X$ each be a D2218: Set element in $X$ such that
(i) \begin{equation} \forall \, x \in X : a \preceq x \end{equation}
(ii) \begin{equation} \forall \, x \in X : b \preceq x \end{equation}
Then \begin{equation} a = b \end{equation}
Proofs
Proof 0
Let $P = (X, {\preceq})$ be a D1103: Partially ordered set such that
(i) $X \neq \emptyset$
Let $a, b \in X$ each be a D2218: Set element in $X$ such that
(i) \begin{equation} \forall \, x \in X : a \preceq x \end{equation}
(ii) \begin{equation} \forall \, x \in X : b \preceq x \end{equation}
This result is an D5370: Order dual theorem to result R1077: Maximum element is unique, whence the claim is a consequence of R1323: Order duality principle. $\square$