Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Binary endorelation
▾
Preordering relation
▾
Partial ordering relation
▾
Partially ordered set
▾
Minimal element
Minimum element
Formulation 0
Let $P = (X, {\preceq})$ be a
D1103: Partially ordered set
such that
(i)
$X \neq \emptyset$
A
D2218: Set element
$m \in X$ is a
minimum element
in $P$ if and only if \begin{equation} \forall \, x \in X : (m, x) \in {\preceq} \end{equation}
Formulation 1
Let $P = (X, {\preceq})$ be a
D1103: Partially ordered set
such that
(i)
$X \neq \emptyset$
A
D2218: Set element
$m \in X$ is a
minimum element
in $P$ if and only if \begin{equation} \forall \, x \in X : m \preceq x \end{equation}
Formulation 2
Let $P = (X, {\preceq})$ be a
D1103: Partially ordered set
such that
(i)
$X \neq \emptyset$
A
D2218: Set element
$m \in X$ is a
minimum element
in $P$ if and only if \begin{equation} m \preceq X \end{equation}
Dual definition
»
Maximum element
Also known as
Least element, Bottom element, Orderwise zero
Child definitions
»
D1821: Map minimum
»
D297: Set lower bound
Results
»
R1083: Minimal element is minimum element in ordered set
»
R1120: Antitonicity of minimum
»
R1076: Minimum element is unique