Let $P = (X, {\preceq})$ be a
D1103: Partially ordered set such that
A
D2218: Set element $m \in X$ is a
minimal element in $P$ if and only if
\begin{equation}
\forall \, x \in X \left( x \neq m \quad \implies \quad (x, m) \not\in {\preceq} \right)
\end{equation}