Let $P = (X, {\preceq})$ be a D1707: Ordered set.
Let $\mathsf{Minimal}$ be the D4462: Set of minimal elements in $P$.
Let $\mathsf{Minimum}$ be the D4463: Set of minimum elements in $P$.
Let $\mathsf{Minimal}$ be the D4462: Set of minimal elements in $P$.
Let $\mathsf{Minimum}$ be the D4463: Set of minimum elements in $P$.
Then
\begin{equation}
\mathsf{Minimal} \subseteq \mathsf{Minimum}
\end{equation}