ThmDex – An index of mathematical definitions, results, and conjectures.
Bilinear map is zero if either argument is zero
Formulation 0
Let $f : V_1 \times V_2 \to W$ be a D281: Bilinear map such that
(i) $0_1, 0_2, 0_W$ are each the D737: Zero vector in $V_1, V_2, W$, respectively
Let $x = (x_1, x_2) \in V_1 \times V_2$ be a D1129: Vector such that
(i) $x_1 = 0_1$ or $x_2 = 0_2$
Then \begin{equation} f(x) = f(x_1, x_2) = 0_W \end{equation}
Subresults
R1372: Inner product is zero if either argument is zero
Proofs
Proof 0
Let $f : V_1 \times V_2 \to W$ be a D281: Bilinear map such that
(i) $0_1, 0_2, 0_W$ are each the D737: Zero vector in $V_1, V_2, W$, respectively
Let $x = (x_1, x_2) \in V_1 \times V_2$ be a D1129: Vector such that
(i) $x_1 = 0_1$ or $x_2 = 0_2$
This result is a particular case of R1370: Multilinear map is zero if any argument is zero. $\square$