ThmDex – An index of mathematical definitions, results, and conjectures.
Result R2075 on D528: Map image
Image of empty set
Formulation 0
Let $f : X \to Y$ be a D18: Map.
Let $\emptyset$ be the D13: Empty set.
Then \begin{equation} f(\emptyset) = \emptyset \end{equation}
Proofs
Proof 0
Let $f : X \to Y$ be a D18: Map.
Let $\emptyset$ be the D13: Empty set.
By definition, $f(\emptyset) : = \{ f(x) : x \in \emptyset \}$. If instead $f(\emptyset) \neq \emptyset$ would be true, then there would have to be an element $x \in X$ for which $x \in \emptyset$. Since $\emptyset$ contains no elements, this is false for all $x \in X$, whence $f(\emptyset)$ must itself be empty. $\square$