Let $M = (\mathbb{R}^n, \mathcal{L}, \mu)$ be a D1744: Lebesgue measure space.
Let $f : \mathbb{R}^n \to [0, \infty]$ be a D313: Measurable function with respect to $M$.
Let $f : \mathbb{R}^n \to [0, \infty]$ be a D313: Measurable function with respect to $M$.
Then
\begin{equation}
\forall \, y \in \mathbb{R}^n : \int_{\mathbb{R}^n} f(x + y) \, d \mu(x) = \int_{\mathbb{R}^n} f(x) \, d \mu(x)
\end{equation}