ThmDex – An index of mathematical definitions, results, and conjectures.
Result R2182 on D2948: Sublevel set
Isotonicity of real sublevel sets
Formulation 0
Let $f : X \to \mathbb{R}$ be a D4364: Real function.
Let $a, b \in \mathbb{R}$ each be a D993: Real number such that
(i) $a \leq b$
Then \begin{equation} \{ f \leq a \} \subseteq \{ f \leq b \} \end{equation}
Formulation 1
Let $f : X \to \mathbb{R}$ be a D4364: Real function.
Let $a, b \in \mathbb{R}$ each be a D993: Real number such that
(i) $a \leq b$
Then \begin{equation} \{ x \in X : f(x) \leq a \} \subseteq \{ x \in X : f(x) \leq b \} \end{equation}
Subresults
R4182: Isotonicity of sublevel probabilities for a random real number
Proofs
Proof 0
Let $f : X \to \mathbb{R}$ be a D4364: Real function.
Let $a, b \in \mathbb{R}$ each be a D993: Real number such that
(i) $a \leq b$
If $x \in \{ f \leq a \}$, then $f(x) \leq a \leq b$, so that $x \in \{ f \leq b \}$. Since $x \in \{ f \leq a \}$ was arbitrary, we have the inclusion $\{ f \leq a \} \subseteq \{ f \leq b \}$. $\square$