ThmDex – An index of mathematical definitions, results, and conjectures.
Cauchy sequence is bounded
Formulation 2
Let $M = (X, d)$ be a D1107: Metric space such that
(i) $x : \mathbb{N} \to X$ is a D65: Cauchy sequence in $M$
Then \begin{equation} \exists \, a \in X, r > 0 : x(\mathbb{N}) \subseteq B(a, r) \end{equation}
Proofs
Proof 0
Let $M = (X, d)$ be a D1107: Metric space such that
(i) $x : \mathbb{N} \to X$ is a D65: Cauchy sequence in $M$
Let $\varepsilon > 0$. Since $x$ is Cauchy, there exists $N \in \mathbb{N}$ such that $d(x_n, x_m) < \varepsilon$ for every $n, m \geq N$. Thus, if $n \geq N$, then \begin{equation} d(x_0, x_n) \leq d(x_0, x_N) + d(x_N, x_n) < d(x_0, x_N) + \varepsilon \end{equation} The set $\{ d(x_0, x_n) : 0 \leq n \leq N \}$ is finite and nonempty, so result R1268: Non-empty finite subsets of classical number sets contain extended extrema guarantees that it contains a maximum, say $K_{\text{max}}$. Setting $K : = d(x_0, x_N) + \varepsilon$ and choosing \begin{equation} r : = \max(K, K_{\text{max}}) + 1 \end{equation} and $a : = x_0$, then we have $d(a, x_n) < r$ for every $n \in \mathbb{N}$ and the claim follows. $\square$