Let $M = (\mathbb{R}^D, \mathcal{B}(\mathbb{R}^D))$ be a D2763: Euclidean real Borel measurable space such that
(i) | $\mu : \mathcal{B}(\mathbb{R}^D) \to [0, \infty]$ is an D85: Unsigned basic measure on $M$ |
(ii) | \begin{equation} \mu(\mathbb{R}^D) < \infty \end{equation} |
Then
\begin{equation}
|\mathfrak{F}_{\mu}| \leq |C| \mu(\mathbb{R}^D)
\end{equation}