An D4361: Unsigned basic function μ:F→[0,∞] is an unsigned basic measure on M if and only if
(1) | μ(∅)=0 |
(2) | ∀E0,E1,E2,⋯∈F(∀n,m∈N(n≠m⟹En∩Em=∅)⟹μ(⋃n∈NEn)=∑n∈Nμ(En)) |
(1) | μ(∅)=0 |
(2) | ∀E0,E1,E2,⋯∈F(∀n,m∈N(n≠m⟹En∩Em=∅)⟹μ(⋃n∈NEn)=∑n∈Nμ(En)) |
▶ | D2887: Absolutely continuous measure |
▶ | D1734: Outer measure |
▶ | D3566: Set of unsigned basic measures |
▶ | D1731: Submeasure |
▶ | D3880: Unsigned basic integral measure |
▶ | D1680: Zero measure |