ThmDex – An index of mathematical definitions, results, and conjectures.
Function odd part is odd
Formulation 0
Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a D992: Function.
Let $f_{\mathsf{odd}} : \mathbb{R}^n \to \mathbb{R}^m$ be the D4693: Function odd part of $f$.
Then $f_{\mathsf{odd}}$ is an D3998: Odd euclidean real function.
Proofs
Proof 0
Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a D992: Function.
Let $f_{\mathsf{odd}} : \mathbb{R}^n \to \mathbb{R}^m$ be the D4693: Function odd part of $f$.
If $x \in \mathbb{R}^n$, then \begin{equation} f_{\mathsf{odd}}(-x) = \frac{f(-x) - f(x)}{2} = - \frac{f(x) - f(- x)}{2} = - f_{\mathsf{odd}}(x) \end{equation} $\square$