Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Operation
▾
N-operation
▾
Binary operation
▾
Enclosed binary operation
▾
Groupoid
▾
Ringoid
▾
Semiring
▾
Ring
▾
Additive group
▾
Odd map
Odd euclidean real function
Formulation 0
A
D4363: Euclidean real function
$f : \mathbb{R}^N \to \mathbb{R}^M$ is
odd
if and only if \begin{equation} \forall \, x \in \mathbb{R}^N : f(-x) = - f(x) \end{equation}
Child definitions
»
D4695: Conjugate-odd complex function
Results
»
R2960: Function odd part is odd
»
R2929: Sum of odd functions is odd