Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Operation
N-operation
Binary operation
Enclosed binary operation
Groupoid
Ringoid
Semiring
Ring
Additive group
Odd map
Odd euclidean real function
Formulation 0
A D4363: Euclidean real function $f : \mathbb{R}^N \to \mathbb{R}^M$ is odd if and only if \begin{equation} \forall \, x \in \mathbb{R}^N : f(-x) = - f(x) \end{equation}
Child definitions
» D4695: Conjugate-odd complex function
Results
» R2960: Function odd part is odd
» R2929: Sum of odd functions is odd