ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Operation
N-operation
Binary operation
Enclosed binary operation
Groupoid
Ringoid
Semiring
Ring
Additive group
Odd map
Odd euclidean real function
Definition D4695
Conjugate-odd complex function
Formulation 0
A D4881: Complex function $f : \mathbb{R}^N \to \mathbb{C}$ is a conjugate-odd complex function if and only if \begin{equation} \forall \, x \in \mathbb{R}^N : f(-x) = - \overline{f(x)} \end{equation}
Formulation 1
A D4881: Complex function $f : \mathbb{R}^N \to \mathbb{R}^2$ is a conjugate-odd complex function if and only if \begin{equation} \forall \, x \in \mathbb{R}^N : f(-x) = - \overline{f(x)} \end{equation}