ThmDex – An index of mathematical definitions, results, and conjectures.
Result R3090 on D2167: Binomial coefficient
Scaling property of binomial coefficient
Formulation 3
Let $n, m \in \mathbb{N}$ each be a D996: Natural number such that
(i) \begin{equation} 1 \leq m \leq n \end{equation}
Then \begin{equation} \frac{n + 1}{m + 1} \binom{n}{m} = \binom{n + 1}{m + 1} \end{equation}
Proofs
Proof 0
Let $n, m \in \mathbb{N}$ each be a D996: Natural number such that
(i) \begin{equation} 1 \leq m \leq n \end{equation}
Using result R1831: Real arithmetic expression for binomial coefficient, we have \begin{equation} \begin{split} \frac{n + 1}{m + 1} \binom{n}{m} & = \frac{n + 1}{m + 1} \frac{n !}{(n - m) ! m !} \\ & = \frac{(n + 1) !}{(n - m) ! (m + 1) !} = \frac{(n + 1) !}{((n + 1) - (m + 1)) ! (m + 1) !} = \binom{n + 1}{m + 1} \end{split} \end{equation} $\square$