ThmDex – An index of mathematical definitions, results, and conjectures.
Result R347 on D528: Map image
Isotonicity of map image
Formulation 0
Let $f : X \to Y$ be a D18: Map.
Then \begin{equation} \forall \, E, F \subseteq X \left( E \subseteq F \quad \implies \quad f(E) \subseteq f(F) \right) \end{equation}
Formulation 1
Let $f : X \to Y$ be a D18: Map.
Let $E, F \subseteq X$ each be a D78: Subset of $X$ such that
(i) \begin{equation} E \subseteq F \end{equation}
Then \begin{equation} f(E) \subseteq f(E) \end{equation}
Proofs
Proof 0
Let $f : X \to Y$ be a D18: Map.
Let $E, F \subseteq X$ such that $E \subseteq F$. If $f(E)$ is empty, then result R7: Empty set is subset of every set guarantees that $f(E) = \emptyset \subseteq f(E)$. Suppose thus that $f(E)$ is nonempty and fix $y \in f(E)$. Then $y = f(x)$ for some $x \in E$. Since $E \subseteq F$, then also $x \in F$ and thus $y = f(x) \in f(F)$. Since $y \in f(E)$ was arbitrary, then $y \in f(F)$ for every $y \in f(E)$ and hence, $f(E) \subseteq f(F)$. $\square$