Let $P = (\Omega, \mathcal{F}, \mathbb{}P)$ be a D1159: Probability space.
Let $X : \Omega \to [-\infty, \infty]$ be an D3066: Absolutely integrable random number on $P$ such that
Let $X : \Omega \to [-\infty, \infty]$ be an D3066: Absolutely integrable random number on $P$ such that
(i) | $X =_{\mathsf{a.s.}} 0$ |
Then
\begin{equation}
\mathbb{E}(X) = 0
\end{equation}