ThmDex – An index of mathematical definitions, results, and conjectures.
Result R352 on D529: Map inverse image
Inverse image of image
Formulation 0
Let $f : X \to Y$ be a D18: Map such that
(i) $A \subseteq X$ is a D78: Subset of $X$
Then \begin{equation} f^{-1}(f A) = A \end{equation}
Proofs
Proof 0
Let $f : X \to Y$ be a D18: Map such that
(i) $A \subseteq X$ is a D78: Subset of $X$
Proceeding directly from the definitions, we have $f A = \{ f(x) : x \in A \}$ and thus \begin{equation} \begin{split} f^{-1}(f A) & = \{ x \in X : f(x) \in f A \} \\ & = \left\{ x \in X : f(x) \in \{ f(z) : z \in A \} \right\} \\ & = \left\{ x \in X : f(x) \text{ satisfies } x \in A \right\} \\ & = \left\{ x \in X : x \in A \right\} \end{split} \end{equation} $\square$