ThmDex – An index of mathematical definitions, results, and conjectures.
Endpoint bounds for real convex combination
Formulation 0
Let $x_1, \dots, x_N \in \mathbb{R}$ each be a D993: Real number.
Let $\lambda_1, \dots, \lambda_N \in [0, \infty)$ each be an D4767: Unsigned real number such that
(i) \begin{equation} \sum_{n = 1}^N \lambda_n = 1 \end{equation}
Then \begin{equation} \min(x_1, \dots, x_N) \leq \sum_{n = 1}^N \lambda_n x_n \leq \max(x_1, \dots, x_N) \end{equation}
Formulation 1
Let $x_1, \dots, x_N \in \mathbb{R}$ each be a D993: Real number.
Let $\lambda_1, \dots, \lambda_N \in [0, \infty)$ each be an D4767: Unsigned real number such that
(i) \begin{equation} \sum_{n = 1}^N \lambda_n = 1 \end{equation}
Then
(1) \begin{equation} \sum_{n = 1}^N \lambda_n x_n \geq \min(x_1, \dots, x_N) \end{equation}
(2) \begin{equation} \sum_{n = 1}^N \lambda_n x_n \leq \max(x_1, \dots, x_N) \end{equation}
Subresults
R3544: Endpoint bounds for real arithmetic mean
Proofs
Proof 0
Let $x_1, \dots, x_N \in \mathbb{R}$ each be a D993: Real number.
Let $\lambda_1, \dots, \lambda_N \in [0, \infty)$ each be an D4767: Unsigned real number such that
(i) \begin{equation} \sum_{n = 1}^N \lambda_n = 1 \end{equation}
Denote $M : = \max(x_1, \ldots, x_N)$ and $m : = \min(x_1, \ldots, x_N)$. We have \begin{equation} \lambda_1 x_1 \leq \lambda_1 M, \quad \ldots, \quad \lambda_N x_N \leq \lambda_N M \end{equation} Applying R1904: Isotonicity of finite real summation, we therefore get \begin{equation} \sum_{n = 1}^N \lambda_n x_n \leq \sum_{n = 1}^N \lambda_n M = M \sum_{n = 1}^N \lambda_n = M \end{equation} In the other direction, we have \begin{equation} \lambda_1 x_1 \geq \lambda_1 m, \quad \ldots, \quad \lambda_N x_N \geq \lambda_N m \end{equation} whence we obtain \begin{equation} \sum_{n = 1}^N \lambda_n x_n \geq \sum_{n = 1}^N \lambda_n m = m \sum_{n = 1}^N \lambda_n = m \end{equation} $\square$