Let $x_1, \dots, x_N \in \mathbb{R}$ each be a D993: Real number.
Let $\lambda_1, \dots, \lambda_N \in [0, \infty)$ each be an D4767: Unsigned real number such that
Let $\lambda_1, \dots, \lambda_N \in [0, \infty)$ each be an D4767: Unsigned real number such that
(i) | \begin{equation} \sum_{n = 1}^N \lambda_n = 1 \end{equation} |
Then
\begin{equation}
\min(x_1, \dots, x_N) \leq \sum_{n = 1}^N \lambda_n x_n \leq \max(x_1, \dots, x_N)
\end{equation}