Applying R4228: Real ordering is compatible with addition repeatedly, we have
N∑n=1xn=x1+x2+x3+⋯+xN−2+xN−1+xN≤y1+x2+x3+⋯+xN−2+xN−1+xN≤y1+y2+x3+⋯+xN−2+xN−1+xN≤y1+y2+y3+⋯+xN−2+xN−1+xN⋮≤y1+y2+y3+⋯+yN−2+xN−1+xN≤y1+y2+y3+⋯+xN−2+yN−1+xN≤y1+y2+y3+⋯+xN−2+xN−1+yN=N∑n=1yn