Let $P = (\mathbb{R}, {\leq})$ be the D1102: Ordered set of real numbers.
Let $x, y, z \in \mathbb{R}$ each be a D993: Real number such that
Let $x, y, z \in \mathbb{R}$ each be a D993: Real number such that
(i) | \begin{equation} x \leq y \end{equation} |
Then
\begin{equation}
x + z
\leq y + z
\end{equation}