ThmDex – An index of mathematical definitions, results, and conjectures.
Expectation minimises second central moment for random real number
Formulation 0
Let $X \in \text{Random}(\mathbb{R})$ be a D3161: Random real number such that
(i) \begin{equation} \mathbb{E} |X|^2 < \infty \end{equation}
Let $\lambda \in \mathbb{R}$ be a D993: Real number.
Then \begin{equation} \mathbb{E} |X - \mathbb{E} X|^2 \leq \mathbb{E} |X - \lambda|^2 \end{equation}
Formulation 1
Let $X \in \text{Random}(\mathbb{R})$ be a D3161: Random real number such that
(i) \begin{equation} \mathbb{E} |X|^2 < \infty \end{equation}
Let $\lambda \in \mathbb{R}$ be a D993: Real number.
Then \begin{equation} \text{Var} X \leq \mathbb{E} |X - \lambda|^2 \end{equation}
Formulation 2
Let $X \in \text{Random}(\mathbb{R})$ be a D3161: Random real number such that
(i) \begin{equation} \mathbb{E} |X|^2 < \infty \end{equation}
Then \begin{equation} \mathbb{E} X = \underset{\lambda \in \mathbb{R}}{\text{arg min}} \; \mathbb{E} |X - \lambda|^2 \end{equation}
Proofs
Proof 0
Let $X \in \text{Random}(\mathbb{R})$ be a D3161: Random real number such that
(i) \begin{equation} \mathbb{E} |X|^2 < \infty \end{equation}
Let $\lambda \in \mathbb{R}$ be a D993: Real number.
Using R3824: Bias-variance partition of mean square error, we have \begin{equation} \mathbb{E} |X - \lambda|^2 = \text{Var} X + (\mathbb{E} X - \lambda)^2 \end{equation} The term $\text{Var} X$ is a constant, so to minimize the right-hand side it is sufficient to minimize the expression $(\mathbb{E} X - \lambda)^2$. The function \begin{equation} \lambda \to (\mathbb{E} X - \lambda)^2 \end{equation} is nonnegative and attains (the minimum) value $0$ at $\lambda = \mathbb{E} X$. Hence \begin{equation} \begin{split} \mathbb{E} |X - \lambda|^2 & = \text{Var} X + (\mathbb{E} X - \lambda)^2 \\ & \geq \text{Var} X \\ & = \mathbb{E} |X - \mathbb{E} X|^2 \\ \end{split} \end{equation} $\square$