Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Binary cartesian set product
▾
Binary relation
▾
Map
▾
Simple map
▾
Simple function
▾
Measurable simple complex function
▾
Simple integral
▾
Unsigned basic integral
▾
Unsigned basic expectation
▾
Basic expectation
▾
Random real number moment
Random real number central moment
Formulation 1
Let $X \in \text{Random}(\mathbb{R})$ be a
D3161: Random real number
such that
(i)
$p \in (0, \infty)$ is a
D5407: Positive real number
(ii)
\begin{equation} \mathbb{E} |X|^p < \infty \end{equation}
The
central moment
of $X$ with respect to $p$ and $\lambda \in \mathbb{R}$ is the
D993: Real number
\begin{equation} \mathbb{E} \left[ (X - \lambda)^p \right] \end{equation}
Also known as
Centered moment
Child definitions
»
D2142: Random real number kurtosis
»
D2141: Random real number skewness
Results
»
R3959: Affine coefficients which minimize expectation of squared distance from a target random real number
»
R4594: Real calculus expression for central moments of gaussian random real number about expectation
»
R4595: Basic real calculus expression for moments of centred gaussian random basic real number
»
R4596: Real calculus expression for moments of standard gaussian random real number
»
R3547: Expectation minimises second central moment for random real number
»
R5466: Linear slope which minimizes expectation of squared distance from a target random real number