ThmDex – An index of mathematical definitions, results, and conjectures.
Basic real calculus expression for moments of centred gaussian random basic real number
Formulation 0
Let $G \in \mathsf{N}(0, \sigma^2)$ be a D210: Gaussian random real number.
Let $n \in \mathbb{N}$ be a D996: Natural number.
Then \begin{equation} \mathbb{E}(G^n) = \begin{cases} \sigma^n (n - 1) !!, \quad & n \in 2 \mathbb{N} \\ 0, \quad & n \in 2 \mathbb{N} + 1 \end{cases} \end{equation}
Proofs
Proof 0
Let $G \in \mathsf{N}(0, \sigma^2)$ be a D210: Gaussian random real number.
Let $n \in \mathbb{N}$ be a D996: Natural number.