We have
\begin{equation}
\begin{split}
\{ X \leq b \}
= \{ X \in (-\infty, b] \}
& = \{ X \in (-\infty, a] \text{ or } x \in (a, b] \} \\
& = \{ X \leq a \text{ or } a < X \leq b \} \\
& = \{ X \leq a \} \cup \{ a < X \leq b \} \\
\end{split}
\end{equation}
Subtracting $\{ X \leq a \}$ from both sides, mapping both sides in $\mathbb{P}$, and applying
R2060: Probability of set difference then gives
\begin{equation}
\mathbb{P}(a < X \leq b) = \mathbb{P}( \{ X \leq b \} \setminus \{ X \leq a \} ) = \mathbb{P}(X \leq b) - \mathbb{P}(X \leq a)
\end{equation}
$\square$