ThmDex – An index of mathematical definitions, results, and conjectures.
Uncorrelated random collection need not be independent
Formulation 0
Let $X \sim \text{Gaussian}(0, 1)$ be a D211: Standard gaussian random real number such that
(i) \begin{equation} Y : = X^2 \end{equation}
Then
(1) \begin{equation} \mathbb{E} X Y = \mathbb{E} X^3 = 0 \end{equation}
(2) \begin{equation} \mathbb{P}(X > 1, Y < 1) = 0 \neq \mathbb{P}(X > 1) \mathbb{P}(Y < 1) \end{equation}
Proofs
Proof 0
Let $X \sim \text{Gaussian}(0, 1)$ be a D211: Standard gaussian random real number such that
(i) \begin{equation} Y : = X^2 \end{equation}
Clear. $\square$