ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Collection of sets
Set union
Successor set
Inductive set
Set of inductive sets
Set of natural numbers
Set of integers
Set of rademacher integers
Rademacher integer
Rademacher random integer
Standard rademacher random integer
Definition D211
Standard gaussian random real number
Formulation 0
Let $X_1, X_2, X_3, \ldots \in \text{Random} \{ -1, 1 \}$ each be a D5075: Random integer such that
(i) \begin{equation} \forall \, n \in \{ 1, 2, 3, \ldots \} : \mathbb{P}(X_n = -1) = \mathbb{P}(X_n = 1) = 1/2 \end{equation}
(ii) $X_1, X_2, X_3, \ldots$ is an D2713: Independent random collection
A D3161: Random real number $Z \in \text{Random}(\mathbb{R})$ is a standard gaussian random real number if and only if \begin{equation} Z \overset{d}{=} \lim_{N \to \infty} \sum_{n = 1}^N \frac{X_n}{\sqrt{N}} \end{equation}
Formulation 1
Let $X_1, X_2, X_3, \ldots \in \text{Random} \{ -1, 1 \}$ each be a D5075: Random integer such that
(i) \begin{equation} \forall \, n \in \{ 1, 2, 3, \ldots \} : \mathbb{P}(X_n = -1) = \mathbb{P}(X_n = 1) = 1/2 \end{equation}
(ii) $X_1, X_2, X_3, \ldots$ is an D2713: Independent random collection
A D3161: Random real number $Z \in \text{Random}(\mathbb{R})$ is a standard gaussian random real number if and only if \begin{equation} Z \overset{d}{=} \lim_{N \to \infty} \left( \frac{X_1}{\sqrt{N}} + \frac{X_2}{\sqrt{N}} + \cdots + \frac{X_N}{\sqrt{N}} \right) \end{equation}
Formulation 2
Let $X_1, X_2, X_3, \ldots \in \text{Rademacher}(1 / 2)$ each be a D5287: Standard rademacher random integer such that
(i) $X_1, X_2, X_3, \ldots$ is an D2713: Independent random collection
A D3161: Random real number $Z \in \text{Random}(\mathbb{R})$ is a standard gaussian random real number if and only if \begin{equation} Z \overset{d}{=} \lim_{N \to \infty} \sum_{n = 1}^N \frac{X_n}{\sqrt{N}} \end{equation}
Children
D4864: Chi random unsigned real number
D210: Gaussian random real number