ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Deduction system
Zermelo-Fraenkel set theory
Collection of sets
Set union
Successor set
Inductive set
Set of inductive sets
Set of natural numbers
Set of integers
Set of rademacher integers
Rademacher integer
Rademacher random integer
Definition D5287
Standard rademacher random integer
Formulation 0
Let $X \in \text{Bernoulli}(1/2)$ be a D3999: Standard Bernoulli random boolean number.
A D5075: Random integer $R \in \text{Random} \{ -1, 1 \}$ is a standard rademacher random integer if and only if \begin{equation} R \overset{d}{=} 2 X - 1 \end{equation}
Standard gaussian random real number