A D11: Set $x$ is an inductive set if and only if
(1) | \begin{equation} \emptyset \in x \end{equation} |
(2) | \begin{equation} \forall \, y \in x : y \cup \{ y \} \in x \end{equation} |
▼ | Set of symbols |
▼ | Alphabet |
▼ | Deduction system |
▼ | Theory |
▼ | Zermelo-Fraenkel set theory |
▼ | Set |
▼ | Collection of sets |
▼ | Set union |
▼ | Successor set |
(1) | \begin{equation} \emptyset \in x \end{equation} |
(2) | \begin{equation} \forall \, y \in x : y \cup \{ y \} \in x \end{equation} |