Set of symbols
Deduction system
Zermelo-Fraenkel set theory
Collection of sets
Set union
Successor set
Inductive set
Set of inductive sets
Set of natural numbers
Set of integers
Set of rademacher integers
Rademacher integer
Rademacher random integer
Formulation 0
Let $X \in \text{Bernoulli}(\theta)$ be a D207: Bernoulli random boolean number.
A D5075: Random integer $R \in \text{Random} \{ -1, 1 \}$ is a rademacher random integer with parameter $\theta \in [0, 1]$ if and only if \begin{equation} R \overset{d}{=} 2 X - 1 \end{equation}
Child definitions
» D5287: Standard rademacher random integer